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Complex H-E Systems

» Complexity features

o

(e]

Heterogeneity (space & time), scales, etc.
Feedback

Nonlinearity

Emergence

Self learning / adaptation

Legendary

e Similar terms:

o

o

o

SENCE (Ma and Wang 1990)
SES
CHANS (Liu et al. 2008)
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Data models (Snapshot model)
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Case |: PES interaction (Global)

* Major goal: how to address policy

interaction and coordination

Detail in An et al. (in preparation-a)



Ecosystem services

* “The benefits people obtain from ecosystems”, or
the “aspects of ecosystems utilized (actively or
passively) to produce human wellbeing” (Fisher et
al. 2008)

> Components of nature, directly enjoyed, consumed, or
used to yield human well-being (Boyd and Banzhaf 2007).

> Twenty-four specific ecosystem services identified (e.g.,
food, water, air, soil, forests, biodiversity, etc. by a UN

report).




o Incentives paid to users of natural resources

S Protect the environment: ecosystem structure, function,

~ andservices

S Protect the people: economic incentives help maintain

-~ lLack of sustainability

oo Resource users return to pre-PES behavior

B Effective for a short time (The curse of no “permanence”)

LI PES mutual VEIationShipS




Concurrent PES programs

» Multiple PES goals (programs) simultaneously
implemented on same spatial units or charged to same

entities (e.g., persons, households, farms, groups)

* Popularity

> Out of 58 exemplar PES programs worldwide (Ezzine-de-Blas et

al. 2016), 28 had concurrent PES programs

> @Grain-To-Green Program (GTGP) vs. Forest Ecological Benefit

Compensation (FEBC) /National Forest Conservation Program

(NFCP)




PES stacking and bundling (USA)

e Multiple recognized ecosystem services are
tradable on markets through the corresponding
credits (or payments)
> Horizontal
> Vertical (“double dipping” or “piggy-backing)

> Temporal

e Bundling of multiple ecosystem services to one

single credit, which is tradable in markets




North Carolina, USA

NG Nutrients offset

e Fa"d with

ES 2009

Wetland credit | 2000

Department of De.partment of
o Transportation Environment and
Natural Resources
.+ $698,372 of the $910,920 that DENR paid for nutrient
credits in 2009 were “wasted” (additionality = 0)

]  Policy change: no future temporal stacking,



sl Mexico

-~ e Federal government:

S > 50% funding

i o Goals A and B

-~ e Llocal government

S ° 50% match-up funding

S o Goals Cand D
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GTGP
Enrollment

Outmigration

Local off-farm jobs

FEBC

Compliance
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* GTGP promotes outmigration
e FEBC reduces outmigration




Conceptual model

PES funders

(Assessment/action)
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Case 2: Perceived global warming

e Major goals:
> What is the impact of CHANGE of natural
climate on people’s perception!?
> How to address bias from spatial

autocorrelation

Detail in An et al. (in preparation-b)




Background

* Big disparity between scientists and the
public about existence and the reason of
global warming

> Socioeconomic, demographic, political, and

ideological impacts are assessed

> Also impacts of climate and weather (perceived

and measured) are somewhat assessed

* Yet: how about changes in climate!?
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. Adding climate change as predictor(s)?

e Personal threat of GW

=f (control variables + measured and

perceived CC variables)

* Problem:
o CC variables are spatially autocorrelated
> Violation of regression assumption

o Biased coefficients and standard errors




Eigenvector spatial filtering (ESF)

* Define spatial neighborhoods (matrix of
1s and 0s)

* Generate eigenvectors
* Use the top eigenvectors as “predictors”

as regression predictors

For detail see Griffith 2003
Also



http://www.complexities.org/Methodology/LTMs/LTMs.htm

Updated model

Perception of GW =

f (control variables

+ measured and perceived CC variables

Improve model fit

No change on significance level




Impact on GW perception

e Control variables have expected effects

> Perceived warming and drought have positive impact on the
perceived threat

> Among measured climate variables, weekly and monthly average
of max. temperatures have positive impact

* Among climate change variables, temperature, not

precipitation DOES have a significant, positive impact:
AT = Tmax (2) o Tmax (1)

Tmax (1) Tmax (2)
( J

5 years
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Case 3: Ghana BMI

* Do land cover variables affect body mass
index (BMI)?

* How to address both spatial and
temporal autocorrelation?

Weigh (kg)

BMI =
Height (m)?!

where 18.5<BMI<25 is good

Detail in Shih et al. (in preparation)
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Land cover data (from satellite imagery)



~ @Generic model

 BMI;=a+pBt+ytc+e






Latent trajectory modeling

* Repeated measures for each study unit are assumed

to come from a continuous underlying trajectory
* Trajectory parameters are modeled, e.g.,
° Intercepts = f (chosen covariates)

> Slope = f (chosen covariates)

> Slope-square= f (chosen covariates)

e But trajectories may be subject to spatial

autocorrelation...




= Y=po P T+e

 Keep in mind: sur=a+pe+yerte

SR Y=PBo* BT+ Pycos(T)*e

- The trajectory function and parameters (e.g., B,

shmnad B, and [3,) determine the shape and trend of

Bonscmeeene each trajectory

-~ e Temporal variability (or correlation) is built-in

o o Think about each trajectory (trend line) is a

e regression of ALL measurements (over time) at one

D PIaCe
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Case 4: Land change

* Major goal: how to address uncertainty in

time measurements’?

* What drives Southeast Michigan land

changes!?

An et al. 2008, 201 |
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Change measurements
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~ Modeling hazards
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...........

k@)= fim =TSt AT 2

SRR Ar—0 At

~  Loghi(t) =B+ B1Xi1 + B2 Xiz + - - . + B Xik



. Applications
Major Exemplar

| Data types

challenge (s) | approaches HSE

E->H H—E

Variable
| , T : orthogonality,
- Cross-sectional  Multicollinearity; o5 4
| multilevel
~data cluster effects .
| modeling
(MLM)
| Latent
- Panel / Temporal :
| o : trajectory
longitudinal data correlation,
| . models LTM,
(Time series &  measure :
| : MLM, survival
- cross-sectional)  coarseness
| models SA)

Case 2:
Perception
GWR, ESF of Global
warming
(country)

Case 5:
Habitat
occupancy

|Special: Spatial  Spatial
ldata autocorrelation

Spatial Case 4:

TR | e Land ChHa Case |:PES
agent-based Ghana BMI interaction

& temporal change :
correlation model (region) L) (global)

|Spatial panel
|data (Space-time
|data)




Case 5: Habitat occupancy

e How to address human-human,
environment-environment, and human-
environment feedbacks

* When, why, and how does emergence
come out!

An et al. (in preparation-c)
Mak (2018)
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FNNR - Monkey Activity, Human Activity, Veg Plots
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Demographic submodel:

What level of biological traits (birth rates, between-birth intervals, and death
rates), if affected by human or natural disturbances, would make the population o
the Guizhou snub-nosed monkey vulnerable?

Age Structure in the FNNR After 730 Steps GGM Population in the FNNR GGM Births in the FNNR
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Figure acknowledgement: Judy Mak 2018 (thesis)



o Input:

«  Family-group agents (25-40 monkeys
per group)

- Environmental layers: elevation,
vegetation

» Input for “"With-humans” scenario
only:
* Human agents (starting points at
homes)
« Resources (gathered by humans)

- Data from Yang et al. 2014, 2016




4 Agent-Based Modeling (ABM) X

' ® ® complexities.org/ABM17/ B 8% e @ %  Q Search

d @ Getting Started

Agent-Based Modeling (ABM) 17: A Symposium That Advances the
Science of ABM

A Project Sponsored by National Science Foundation (

Home
Project

People
Principal Investigators
Keynote Speakers
Science Committee Members

Participants




Complex H-E Systems

o Complexity features
> Feedback
> Nonlinearity
> Emergence
o Self learning / adaptation
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> Heterogeneity (space & time), scales, etc.

e Similar terms:
> SENCE (Ma and Wang 1990)
o SES
o CHANS (Liu et al. 2008)
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Extremely important

None of what | am talking about today would be possible
without help from:

Dr. Douglas A. Stow, Professor of Geography, SDSU

Dr. John Weeks, Professor of Geography, SDSU

Dr. Scott Yabiku, Professor of Sociology, ASU

Dr. Dirgha Ghimire, Research Associate Professor, U. Michigan

Dr. Xiaodong Chen,Asso. Professor of Geography, UNC, Chapel Hill
Dr. Rebecca Lewison, Professor of Biology, SDSU

Dr. Stuart Aitken, Professor of Geography, SDSU

Shuang Yang, Cindy Tsai, Jie Dai--Doctoral Students, SDSU Geography
Lloyd (Pete) Coulter, Remote Sensing Scientist, SDSU Geography
Hsiang Ling Chen, postdoctoral fellow, SDSU Geography/Biology
Evan Casey, Mengen Lyu, SDSU undergraduate assistants
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Questions??




